DRUM VS. DISK BREAKS
Brake technology, just like suspension technology and fuel-system technology, has come a long way in recent years. What began in the '60s as a serious attempt to provide adequate braking for performance cars has ended in an industry where brakes range from supremely adequate to downright phenomenal. The introduction of components like carbon fibre, sintered metal and lightweight steel, along with the adoption of ABS, have all contributed to reduced stopping distances and generally safer vehicles.
One of the first steps taken to improve braking came in the early '70s when manufacturers, on a widespread scale, switched from drum to disc brakes. Since the majority of a vehicle's stopping power is contained in the front wheels, only the front brakes were upgraded to discs during much of this period. Since then, many manufacturers have adopted four-wheel disc brakes on their high-end and performance models as well as their low-line economy cars. Occasionally, however, as in the case of the 1999 Mazda Protegé, a manufacturer will revert from a previous four-wheel disc setup to drum brakes for the rear of the car in order to cut both production costs and purchase price.
Why are disc brakes better than drum and how much, if any, loss of braking occurs when using rear drum brakes on a modern car? That's what we're going to find out:
Friction and Heat
Before you can appreciate the difference between drum and disc brakes, you have to understand the common principles that both systems use when stopping a car: friction and heat. By applying resistance, or friction, to a turning wheel, a vehicle's brakes cause the wheel to slow down and eventually stop, creating heat as a byproduct. The rate at which a wheel can be slowed depends on several factors including vehicle weight, braking force and total braking surface area. It also depends heavily on how well a brake system converts wheel movement into heat (by way of friction) and, subsequently, how quickly this heat is removed from the brake components. This is where the difference between drum brakes and disc brakes becomes pronounced.
Drum Brakes
Early automotive brake systems, after the era of hand levers, of course, used a drum design at all four wheels. They were called drum brakes because the components were housed in a round drum that rotated along with the wheel. Inside was a set of shoes that, when the brake pedal was pressed, would force the shoes against the drum and slow the wheel. Fluid was used to transfer the movement of the brake pedal into the movement of the brake shoes, while the shoes themselves were made of a heat-resistant friction material similar to that used on clutch plates.
This basic design proved capable under most circumstances, but it had one major flaw. Under high braking conditions, like descending from a steep hill with a heavy load or repeated high-speed slowdowns, drum brakes would often fade and lose effectiveness.
Usually, this fading was the result of too much heat build-up within the drum. Remember that the principle of braking involves turning kinetic energy (wheel movement) into thermal energy (heat). For this reason, drum brakes can only operate as long as they can absorb the heat generated by slowing a vehicle's wheels. Once the brake components themselves become saturated with heat, they lose the ability to halt a vehicle, which can be somewhat disconcerting to the vehicle's operator.
Disc Brakes
Though disc brakes rely on the same basic principles to slow a vehicle (friction and heat), their design is far superior to that of drum brakes. Instead of housing the major components within a metal drum, disc brakes use a slim rotor and small calliper to halt wheel movement. Within the calliper are two brake pads, one on each side of the rotor, that clamp together when the brake pedal is pressed. Once again, fluid is used to transfer the movement of the brake pedal into the movement of the brake pads.
But, unlike drum brakes which allow heat to build up inside the drum during heavy braking, the rotor used in disc brakes is fully exposed to the outside air. This exposure works to constantly cool the rotor, greatly reducing its tendency to overheat or cause fading. Not surprisingly, it was under racing circumstances that the weaknesses of drum brakes and the strengths of disc brakes were first illustrated. Racers with disc brake systems could carry their speed "deeper" into a corner and apply greater braking force at the last possible second without overheating the components. Eventually, as with so many other automotive advances, this technology filtered down to the cars driven by everyday people on public roads.
Drum vs. Disc: Today
In today's automotive pantheon, it's not uncommon to find four-wheel disc brakes as standard equipment on medium-priced, non-performance-oriented models. The majority of new vehicles, however, continue to utilise a front-disc/rear-drum brake setup. What does this say about the current state of braking systems? Are these manufacturers sacrificing vehicle safety in order to save a few bucks by installing disc brakes on only the front wheels?
The truth is that today's disc/drum setups are completely adequate for the majority of new cars. Remember that both disc and drum brake design has been vastly improved in the last 20 years. In fact, the current rear drum brake systems on today's cars would provide better-stopping performance than the front disc setups of the '70s. And today's front disc brakes are truly exceptional in terms of stopping power. Combined with the fact that between 60 and 90 percent of a vehicle's stopping power comes from the front wheels, it's clear that a well-designed, modern drum brake is all that's required for most rear wheel brake duty.
High-performance cars like GTRs, 911s and Corvettes can justify a four-wheel disc brake system, especially if their owners participate in some form of racing activity on the weekends. The rest of us get more of a benefit from the lower cost of drum brakes.
Expecting every vehicle built today to come with four-wheel disc brakes would require an across-the-board increase in purchase price, and that could stop new car buyers much quicker than any brake system.